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Abstract 

The angular and polarization dependence of resonant 
scattering of X-rays by spherical atoms, and atoms with 
the symmetry of one of the cubic point groups, is 
described by formulae derived from an expansion in 
tensors of order up to four. At this level of approxima- 
tion, the scattering can be anisotropic for any crystal- 
lographic symmetry. The change of scattering amplitude 
with Bragg angle is different for different polarization 
states, even for spherical atoms. The polarization 
dependence of this scattering offers a new method for 
estimating this 0 dependence. 

1. Introduction 

This paper explores some of the complications in the 
coherent resonant scattering of X-rays that are found 
when atomic size is taken into account for non-magnetic 
atoms in spherical symmetry (where no atomic ani- 
sotropy is possible) and in cubic point groups (which 
exclude dipole anisotropy). An approximation of the 
atomic scattering factorffor X-rays isj~, often defined as 
a Fourier transform of the electron density. Some more- 
accurate definitions of this non-resonant part of the 
scattering factor are discussed by Kissel et aL (1995). 
This factor is quite sensitive to scattering angle because 
wavelengths are comparable with atomic dimensions. To 
correct for effects of resonance, one can add the 
dispersion terms f '  and if". These terms, which arise 
mostly from inner-shell electrons, are less sensitive to 
angle than is j~ because, for a given wavelength, 
retardation effects decrease as dimensions decrease. 
Usually in the analysis of diffraction data, one uses 
zero-angle values o f f '  and f ' ,  which are derived from 
absorption experiments or else calculated from theory 
with neglect of atomic size (the dipole approximation) 
and thus independent of angle. One also generally 
assumes that the effect of polarization is an independent 
factor, the same for all atoms, which can be taken into 
account in the initial reduction of diffraction intensity 
data. This separation of polarization from the scattering 
factor in the structure-factor algebra is impossible in the 
more nearly exact treatment considered here. 

2. Optical model 

Here a Cartesian basis is used for components of vectors 
and tensors; k and k' are wave vectors with magnitude 
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k = 2zr/~. for incident and scattered photons; e and t '  are 
unit linear polarization vectors of the same photons; s and 
p indicate respectively that a polarization vector is 
perpendicular to or parallel with the plane containing k 
and k'. 

The algebraic form of a tensor expansion of the 
resonant scattering can be obtained from an expression 
from perturbation theory for electric transitions (James, 
1982): 

f ,  +/f , ,  ~ • o ~-- Bc~BcaI(E~ - E~ + hoJ-  it'/2), (1) 
c 

Bc*a = (ale'. r[1 - ik ' .  r -  (k' .  r) 2/2 +. . . ] [c) ,  (2) 

B°~ = (clE-r[1 + ik. r - (k-r)Z/2 - . . . ] l a ) .  (3) 

When terms are arranged according to the powers of k 
and k', (1) can be written as a sum of tensor expressions: 

f '  + if" = fs + f r  + fu + fv  + . . . .  (4) 

= (5) 
m,n 

f r  = Y~ (eme',k'o - e" e,  ko)Tm,o. (6) 
m,#1,o 

fu  = ~ emk, e'ol(pUm,op, (7) 
m,n,o,p 

f V  - -  E (EmktnEtok~p "q- EtmknEokp)Vmnop • ( 8 )  
m,n,o,p 

This expansion is not the same as the electromagnetic 
multipole expansion in spherical harmonics, but to 
designate the terms as if it were is convenient and 
commonplace: S as electric dipole-dipole, T as dipole- 
quadrupole etc. Magnetic transitions add additional 
tensors that can be antisymmetric for interchange of 
certain indices (Brouder, 1990; Blume, 1994). A 
magnetic dipole-electric dipole combination gives 

fee = Y~ (eme'nk'o + e'me, ko)Ww, o. (9) 
m,n,o 

Magnetic dipole-magnetic dipole and magnetic dipole- 
electric quadrupole give two tensors X and Y like (7) and 
they can be added to U. But the symmetry of their 
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elements and the polarization geometry are not the same 
and it is convenient to keep them separate here. 
Combination of magnetic quadrupole and electric dipole 
gives 

fz  = Y~ (Emk~nEtokSp - -  EtmknEokp)Zmnop • (10) 
m,ll,o,p 

Here and in the following equations, these scattering 
factors include the polarization factor. The tensors S, T 
etc. are sensitive functions of  wavelengths near absorp- 
tion edges and their elements are complex numbers. In 
the atomic coordinate system, they do not change with 
Bragg angle 0 nor azimuthal angle ~. The dependence of 
scattering on these angles is contained in the product of 
each tensor with its vectors. 

3. Spherical symmetry 
For atoms with spherical symmetry, S is diagonal with 
Sll = $22 = $33. At this level of approximation, the 
resonant scattering terms f '  and f "  can be defined as 
scalars (independent of 0) that must be multiplied by 
e.  d, the same polarization factor as forJ~. Thus, j~ after 
correction for polarization in the conventional way is 
independent of 0. 

Tensors of odd rank are zero for atoms of spherical 
symmetry or any other symmetry that includes a center of  
inversion. Thus, the third-rank tensors T and W are 
absent. Tensors Y and Z also are zero in spherical 
symmetry. 

Tensors of  fourth rank introduce angular dependence 
and more complicated polarization effects. When the 
sequence of vectors and their indices corresponds to (7), 
the 81 elements of  U fit the pattern shown in Table 1 with 
a = b + 2c and U, jkl = Uotk = Ujikl  ---- Ujilk.  The tensor V 
has the same pattern with the additional condition that 
b = c .  

When the terms of fu  and fv  are written out, they can 
be arranged to give, after dropping terms with factors 
(e. k) or (d. k'): 

fu "-- UI212[(g " d ) (k .  k') + ( t .  k ' )(d • k)], (1 1) 

i v  ---- V1212(B" Bt)( k "  k -~- k t .  kt) .  (12)  

Let Ba = k2Ulzl2 and B2 - -  2k2V1212 • For the polarization 
normal to k and k', (11) becomes 

fu(ss) = B 1 cos(20). (13) 

For polarization in the plane of k and k' and with some 
trigonometric manipulation, (11) becomes 

fu(PP) = B1 cos(40). (14) 

Equation (12) reduces to 

f v ( s s )  = Bz, 

Table 1. Elements of  Um,op in spherical symmetry 

op 11 22 33 23 31 12 

mn 
11 a b b 0 0 0 
22 b a b 0 0 0 
33 b b a 0 0 0 
23 0 0 0 c 0 0 
31 0 0 0 0 c 0 
12 0 0 0 0 0 c 

fv(PP) = B2 cos(20). (16) 

This angular dependence forfv is the same as forJ~ adj , .  
In all the above cases, the sp andps  terms are zero. These 
polarization factors for k 2 terms of isotropic atoms were 
derived by H6nl (1933). They are also valid for some, but 
not all, of the terms of higher order. 

According to L-S coupling rules, the tensor X is zero 
for inner-shell resonances but it may be observable in 
heavy elements as a result of  relativistic effects (Brouder, 
1990). In spherical symmetry, it is zero except for six 
equal elements X/j/j (i # j )  and six others X/jji = -X/j0. 
The scattering is 

fx  = X1212(k × g)" (k '  × g') (17) 

or, more explicitly, with B4 = k2X1212, 

A ( S S )  "-" B 4 cos(20) ,  (18)  

fx(PP) = B4, (19) 

fx(sP) = fx(PS) = 0. (20) 

Note that the polarization factors in (18) and (19) are just 
the reverse of  those for conventional scattering. 

Another way to t reatfu is to divide (11) into two parts 
according to the M and N functions of Kissel et al. 
(1995): 

fuM = U1212(/;"/~t)( k "  kt) ,  (21) 

fun = U1212(/;" k t ) (  et" k) .  (22) 

For the ss and pp polarization cases, (21) and (22) 
become 

fuM(SS) = B1 cos(Z0), (23) 

fuM(PP) --- B1 c°sZ(20), (24) 

ftrN(SS) = 0, (25) 

fuu(PP) = -B1 sinZ(20) • (26) 

In the approximation including tensors up to the fourth 
(15) r a n k ,  the total atomic scattering factor, including its 
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polarization factor, is 

f(ss)  = f 0  + Sll 21- B1 -k- B 2 -k- B 4 - 2(B x + B4) sin 2 0, 

(27) 

f (pp) = f(ss)cos(20) -- (B 1 - B4)sinZ(20). (28) 

4. C u b i c  s y m m e t r y  

There are five cubic point groups: 23-T, 43m-Tu, m3-Th, 
432-0 and m3m-Oh. For each of these symmetries, the 
second-rank tensor S is isotropic and independent of  0_, as 
is the case for spherical symmetry. For m3,432 and m3m, 
the tensor T is zero. For 23 and 43m, in a basis with axes 
along twofold axes, T is zero except for six equal 
elements (Templeton & Templeton, 1994): 

TI23 = T231 = T312 -- T321 = T132 = T213. (29) 

In this case, and others below, the magnitudes and 
functional form of the change of scattering with ~ and 0 
depends on the direction of h = (k' - k)/2zr; 
represents a rotation of the atom around h and is zero or 
Jr when k' + k is in the xy plane of  the atom. Let B3 = 
kT12 3. For h -- [hO0]: 

fr(ss) = 2B 3 sin(2~)sin 0, (3o) 

fT (PP)  = 2B3 sin(21P) sin3 0, (31) 

fr(sp) =fT(PS) = 2B 3 cos(2~p) sin 2 0. (32) 

For h = [hh0]: 

fr(ss) =fr (PP)  = 0, (33) 

fr(sp) =fr(ps) = B 3 cos ~sin(20). (34) 

For h = [hhh], f r  is independent of  ~: 

fr(ss) = - ( 2  × 31/2/3)B3 sin 0, (35) 

fr(PP) = (2 x 31/2/3)B3 sin0[cos 2 0 -4- 1], (36) 

fr(sp) = fr(ps) = 0. (37) 

Tensor W is non-zero only for 432 and 23 among the 
cubic groups. Its elements are zero except for 

W123 = W231 = W312 = - W 3 2 1  = - W I 3 2  = - W 2 1 3 .  

(38) 

For any atomic orientation, 

fw(ss) =fz/(PP) = 0, (39) 

fw(sp) = -fz/(PS) = 2kW12 3 cos  2 0. (40) 

This rotation of polarization gives rise to isotropic optical 
activity in the forward direction. 

In all the cubic point groups, and with x, y, z along the 
cubic axes, the fourth-rank tensors U and V have the 
same patterns as for spherical symmetry except that they 
lack the restriction a = b + 2c. It is convenient to divide 
U into iU + aU, where i u  is an isotropic atom tensor with 
iu~jj = b + 2c in place of U2w. All the lp dependence 
comes from aU, which is zero except for the elements 

aUl l l l  = au2222 = au3333 = a - b - 2c. (41) 

The tensor V can be divided in the same manner. Let g be 
the part o f f  calculated from aU + aV, C 1 = k2(2av1111 -k- 
a U l l l l  ) and C2 = k2(2aVllxX - "Ullla)- For h = [h00]: 

g(SS) -'- 1 C  1 sin2(2g0 cos 2 0, (42) 

g ( p p )  = l [ c  2 -- Cl(COS 4 1/f --~ sin 4 l/r)] sin2(20), (43) 

g(ps) = -g(sp) = 1C 1 sin(4~) sin0cos2 0. (44) 

For h =  [hh0]: 

g(SS) --" 3 C  1 sin2(2~r) cos 2 0 q-- l C  2 sin 2 lps in  2 0, (45) 

g(pp) = ~C114 cos 2 1/f COS 4 0 

--  (COS 41/r + 2 sin 4 l/r) sin2(20)] 

_ 1 C214 cos 2 1]r sin 4 0 -- sin2(20)], (46) 

g(ps) = -g(sp)  

= ¼ sin(27~) sin 0[C2 sin 2 0 

+ C~ cos 2 0(cos 2 ~p - 2 sin 2 ~)]. (47) 

For h = [hhh]: 

g(SS) : 1 Cl COS 2 O "-[- 1 C2 sin 2 O, (48) 

g(pp) = ~ Cl[COS(20) - ¼ sin2(20) + 1] 

+ lC2[cos(20) + sin2(20) - 1], (49) 

g(sp) = g(ps) = -(2u2/6)C1 cos(3@) cos 3 0. (50) 

The geometry of tensor X is the same in any cubic 
symmetry as in spherical symmetry and (17) to (20) are 
valid. Its magnitude may be greater in this lower 
symmetry i f  crystal fields or chemical bonds affect the 
wavefunctions of excited states. 

Tensors Yand Z are zero except in point groups 23 and 
m3. The elements of  Yare zero except 

Y1221 = Y2332-- Y3113 = -Y2112  =-Y3223  =-Y1331-  

(51) 
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Let C3 - -  k 2 y 1 2 2 1  • For h -- [h00]: 

Jr(ss) =f r (PP)  = 0, (52) 

fr(sp) =fr(PS)  = ¼C 3 sin(2~) sin(20) cos 0. (53) 

For h = [hhO]: 

f r ( s s )=  - 3 C3 sin @sin(27,) sin(20 ), (54) 

fr(PP) = C3[c°s 7 t -  3sin @sin(2~P)] sin(20), (55) 

fr(sp) = - fr(ps)  
_ 1 C {sin lp[11 cos 0 + cos(30)] 

+ sin(3~)[15 cos0 - 3 cos(30)]}. (56) 

For h = [hhh]: 

Jr(ss) --fr(PP) = (61/2/6)C3 cos(37z) sin(20), (57) 

fr(sp, 7z) = f r ( p s , - 7 2 )  

= -(31/2/24)C3 [9 sin 0 + sin(30)] 

+ (61/2/24)C315 cos 0 - cos(30)] sin(3 72). 

(58) 

Tensor Z is zero except for the 12 elements 

ZO. ~ = Zj, o. = -Zo.ji = -Zju i (/j = 12, 23, 31). (59) 

Let C4 = k2Z1212 • For h = [hOO],fz is given by (52) and 
(53) with 2C4 in place of C3. For h = [hh0]: 

fz(ss) = - ¼ C415 cos 7t + 3 cos(3¢,)] sin(Z0), (60) 

fz(PP) - -  3 C 4  S i l l  7, sin(Zap) sin(20). (61) 

With 2C4 in place of C3, (56) gives fz(sp) and -fz(ps). 
For h = [hhh] and with 2C4 in place of  C3, (57) gives 
-fz(ss) and -fz(PP), and (58) gives fz(sp,-72) and 

fz(ps, ap). 

5 .  D i s c u s s i o n  

The dependence of resonant scattering on 0 is a small 
effect that is of little consequence in many experiments, 
yet it may be significant for the intensities of  weak 
reflections. Its magnitude may be particularly important 
for the interpretation of experiments based on small 
differences of intensities recorded with multiple photon 
energies. A possible example is differential radial 
distributions for amorphous materials (Raoux, 1994). 
Even when it is unimportant, one must understand it to 
have confidence in such experiments. One can see from 
(27) and (28) that even for spherical atoms the concept of 
f '  and f "  as scalar functions of 0 with the traditional 
polarization factors fails with the first angle-dependent 

terms. The best one can do is to define a double-valued 0 
dependence for two states of linear polarization. Then the 
struc~re factor is also double valued except for special 
cases such as perfectly polarized radiation or polariza- 
tion-analyzed detection. Fortunately, the ss case is 
dominant in many experiments with synchrotron radia- 
tion and (28) may enter only as a small correction term, if  
at all. It is also true that the last term in (28) generally is 
unimportant, except for some weak reflections, even in 
experiments with unpolarized radiation. But even this 
simplicity vanishes when atomic anisotropy is signifi- 
cant, as it often is near an absorption edge. 

In symmetries lower than those considered here, the 
above equations for anisotropic scattering become much 
more complicated. Then]~ can be strongly anisotropic. It 
can dominate the higher-order terms and make them 
difficult.or impossible to detect. Most of  the studies that 
have been published concerning anisotropic resonant 
scattering are based on anisotropy o f f  s, even in cubic 
crystals (e.g. Dmitrienko, 1984; Templeton & Templeton, 
1985; Kirfel et al., 1991; Nagano et al., 1996). The 
symmetries considered in this paper are those of the 
atom, not those of the crystal. 

Bergstrom et al. (1997) have reported theoretical 
values of  the angle dependence of the resonant scattering 
(in spherical symmetry) in terms of formulae with lookup 
tables for any element for photon energies above and not 
too close to the K edges. For energies close to absorption 
edges, where resonance is most extreme and most 
sensitive to chemical state, good theoretical values are 
not available. Existing experimental values (e.g. Temple- 
ton et al., 1982) are prone to bias from errors that are 
correlated with 0, such as those associated with 
absorption, thermal motion, polarization state of  the 
radiation, or details of  instrumental geometry A 
particular problem for f '  is that its definition is based 
on a partition of  the total amplitude into resonant and 
non-resonant parts. Thus, its variation measured in an 
experiment is inversely correlated with that assumed for 
3~, which is a sensitive and imperfectly known function of 
0. For these reasons, it is interesting that (27) and (28) 
offer a new way to estimate this 0 dependence, which 
may avoid much of this bias. In a case where B4 can be 
neglected (lighter atoms), parameter B1, which deter- 
mines the 0 dependence of  the resonant scattering in.both 
polarization states, can dominate the residual pp scatter- 
ing near 0 = 45 °. Thus B1, or an upper limit on its 
magnitude, can be derived from measurements of  the 
intensity ratio Ipp/Iss for a suitable set of crystal 
reflections near 0 = 45 °. While this method is not free 
of technical problems such as accurate measurement of 
weak intensities and elimination of multiple scattering, it 
appears to be possible with synchrotron radiation. 

The equations giving the dependence on ~ and 0 of  the 
anisotropic scattering for cubic point groups illustrate the 
great variety of  complexity that can occur. They may also 
be helpful for identification of the most favorable 
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orientations to be used in experiments that seek to 
measure such effects. For computer calculations, parti- 
cularly if there is interest in more general orientations or 
lower symmetry, it is more convenient to program the 
arithmetic directly from expressions such as (5)-(10). 
The equations in this paper are explicit only for two 
states of linear polarization, but if combined with 
appropriate attention to phase they can be used for any 
polarization state of the incident radiation. 
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